暨大主页 | 物理与光电工程学院 |
English

光子技术研究院学术报告(92):20170331Prof. Pengfei Wang

发布时间:2017-03-29 15:31 发布单位:光子技术研究院

题目:Latest developments at the Advanced Laser lab of Harbin Engineering Univ.

报告人:Prof. Pengfei Wang(Harbin Engineering University)

主持人:金龙研究员

时间:2017年3月31日上午10:00

地点:曾宪梓科学馆405会议室

  

报告摘要:

The mid-infrared (mid-IR) 3-5 μm region is located in one of the two atmospheric transparent windows (the other is from 8 to 13 μm) where the Earth’s atmosphere is with relatively low transmission. Therefore it becomes an important area using remote laser sensing for the atmospheric monitoring, security and a range of industrial and military applications, such as early disease diagnosis, detecting remote explosives, countermeasures against heat-seeking missiles and covert communication systems. Glass is a non-crystalline amorphous solid, as an important material it has been well developed for a widespread range of optical devices due to its high transmission and excellent machinability. During the past few decades, most familiar, and historically the oldest glass is silicate glass, namely based on the chemical compound silica, such as silicon dioxide, or quartz glass, because of its low transmission loss in visible to near-infrared wavelength regions. However, silica glass has a reasonable high transmission loss in the mid-infrared range. Therefore a compound glass with high transparence in 3-5 µm is required to meet the demand of the host material of 3-5 µm mid-IR optical devices. The position of the IR absorption edge, i.e., the infrared longwave transmission limit, of an optical glass is intrinsically limited by the multiphonon absorption edge of the glass. So far, a range of compound glasses have been reported, such as germinate glass, fluoride glass, chalcogenide glass and so on. Compared with the traditional silica glass, compound glass is more suitable for optical gain matrix due to its lower melting temperature and higher solubility of rare-earth ions. Moreover, compound glass can be applied in mid-IR wavelength range because the phonon energies and multi-phonon relaxation rates in compound glass are much lower than that in silica glass. This talk will highlight some of the latest exciting progress in the field of compound glasses, microresonator based photonic devices and integrated photonic devices developed at the Advanced Laser Lab of the Harbin Engineering Univ. Examples of state-of-the-art compound glass based photonic components for novel near-, mid-IR and up-conversion lasing applications will be presented also in this talk.

  

报告人简介:

王鹏飞教授,2004-2005年工作于意大利国家科研院微电子和微系统研究所,参与欧航局“金星快递”光学遥感项目和美国宇航局“MEMS微型推进器阵列”、“MEMS陀螺”等项目的研发工作。2008年在爱尔兰都柏林理工学院光子研究中心获光学工程博士学位。博士毕业后获得爱尔兰政府EMPOWER国家博士后奖学金。2009年获国家留学基金委“2008年度国家优秀自费留学生奖学金”。2010年8月获欧盟玛丽居里夫人学者奖学金(Marie Curie Fellowship)资助,加入到英国南安普敦大学光电子研究中心工作。2012年加入英国南安普敦大学和SPI Lasers联合成立的“先进激光实验室”。2013年1月,在爱尔兰都柏林理工学院光子研究中心获高级研究员终身职位(Tenured)。2013年12月,获爱尔兰皇家学院优秀外派学者奖学金。海外工作期间,作为项目第一负责人(PI),承担科研项目合同总金额89万欧元。目前就职于哈尔滨工程大学理学院,特聘教授,博士生导师。研究兴趣主要包括光纤激光器件、光纤传感器、微纳光纤光子器件、非线性微腔谐振器件、计算光子学(数值模拟和优化建模)、集成光学器件的开发与应用。目前致力研究的方向有中红外波段激光器技术、光纤传感技术和中红外波段集成光学器件,尤其是中红外波段激光器件在军民技术领域中的开发和应用。主持在研中组部、科技部、国家自然科学基金、人社部、黑龙江省重点项目和政府间国际联合研究基金项目共5项,项目合同金额1000余万元。目前已在国际学术期刊和国际会议上发表和合作撰写了超过180篇论文。文章累计被引用1800余次,他引1400余次,H-index为24。

  

欢迎广大师生参加!

  

光子技术研究院

2017年3月29日