您的位置:首页  团队成员  专任教师

关柏鸥

职称:教授

电话:020-37337012

E-mail:tguanbo@jnu.edu.cn

个人简介


关柏鸥,男,1972年出生,教授,博士生导师,现任光子技术研究院院长兼党总支书记、理工学院院长兼党委副书记、校学术委员会副主任、校学科建设委员会主任、校学位委员会委员、广东省光纤传感与通信技术重点实验室主任。2012年获得国家杰出青年科学基金资助,2014年入选科技部“创新人才推进计划”中青年科技创新领军人才,2016年入选国家“万人计划”科技创新领军人才,2018年入选“广东特支计划”杰出人才(南粤百杰),2019年当选美国光学学会会士(OSA Fellow)。

1994年在四川联合大学(现四川大学)应用物理系获学士学位,1997年和2000年在南开大学现代光学研究所获硕士和博士学位,读博士期间在香港理工大学联合培养,其后在香港理工大学从事博士后研究。2005年加入大连理工大学物理与光电工程学院,任教授、博士生导师,期间创建了辽宁省先进光电子技术重点实验室,任实验室主任。2009年加入暨南大学,创建了暨南大学光子技术研究所(后更名为光子技术研究院)和广东省光纤传感与通信技术重点实验室,任所长(院长)和实验室主任。

主要从事光纤器件、光纤传感技术、生物光子学、微波光子学方面研究,近期研究重点为光纤生物传感器、光纤光声成像、光纤诊疗技术等,承担完成国家杰出青年科学基金项目结题验收为优秀,主持国家自然科学基金重点项目2项(1项结题验收为优秀)、重点国际合作项目1项、NSFC-广东联合基金重点项目1项、广东省自然科学基金研究团队项目1项、广东特支计划本土团队项目1项,共发表SCI收录论文272篇,被SCI他引3978次,带领团队荣获光纤传感领域三大国际会议(OFSEWOFSAPOS)最佳论文奖、杰出创意奖、最佳学生论文奖等,研究成果被ScienceDailyPhys.orgVerdictMedicalViewMedgagetHealthImaging等科技媒体广泛报道。


荣誉与奖励


2019年,当选美国光学学会会士(OSA Fellow

2018年,荣获广东省五一劳动奖章

2018年,入选广东特支计划杰出人才(南粤百杰)

2016年,入选国家万人计划科技创新领军人才

2015年,荣获国务院政府特殊津贴

2015年,获聘广东省珠江学者特聘教授

2014年,被评为广东省高校千百十工程先进团队带头人

2014年,入选科技部创新人才推进计划中青年科技创新领军人才

2014年,入选广东特支计划科技创新领军人才

2012年,荣获国家杰出青年科学基金资助

2010年,入选广东省高校千百十工程国家级培养对象

2008年,荣获第三届大连市青年科技奖

2007年,入选辽宁省百千万人才工程百层次人才

2006年,入选教育部新世纪优秀人才


代表性科研项目


1.             广东特支计划本土创新团队项目:光纤生物医学传感及成像技术

       2019BT02X105),2020.07-2025.062000万,主持,在研

2.             国家自然科学基金重点国际合作项目:微波光子光纤传感技术

       61860206002),2009.01-2023.12244万,主持,在研

3.             广东省科技计划项目(科技创新平台类):广东省光纤传感与通信技术重点实验室

       2020B1212060043),2020.06-2023.05450万,主持,在研

4.             国家自然科学基金NSFC-广东联合基金重点项目:超敏感光纤倏逝波生物传感器基础问题和关键技术研究

       U1701268),2018.01-2021.12270万元,主持,在研

5.             国家自然科学基金重点项目:双频干涉型光纤激光声矢量传感器基础问题和关键技术研究

       61235005),2013.01-2017.12300万元,主持,已结题

6.             广州市科技计划重点项目:温度/应变/振动多参量分布式光纤传感系统研究

       201904020032),2019.04-2022.03200万元,主持,在研

7.             国家杰出青年科学基金:光纤传感器

       61225023),2013.01-2016.12280万元,主持,结题评价优秀

8.             国家自然科学基金重点项目:集成化、高速率、多参数、大规模新型光纤传感网络关键技术及其应用研究

       60736039),2008.01-2011.12180万元,主持,结题评价优秀

9.             国家自然科学基金面上项目:低温环境下快速响应可复用光纤氢传感器研究

       61177074),2012.01-2015.1268万元,主持,已结题

10.         广东省自然科学基金团队项目:面向电力监测光纤传感网络关键技术研究

       S2013030013302),2013.10-2018.10200万元,主持,结题评价良好 结题评价有通过良好两档,良好为最高等级)

11.         广东特支计划科技创新领军人才项目:微纳光纤光栅生物传感器技术研究

       2014TX01X029),2015.04-2018.0380万元,主持,结题评价优秀

12.         广东省科技计划项目(公益研究与能力建设专项):广东省光纤传感与通信技术重点实验室

       2014B030301011),2015.01-2017.12300万元,主持,已结题,2019省重点实验室评估优秀


代表性论文


1.  Y. Liang, H. Sun, L. Cheng, L. Jin*, and B.-O. Guan*, High spatiotemporal resolution optoacoustic sensing with photothermally induced acoustic vibrations in optical fibres, Nat. Commun. Vol. 12, No.1, Article #: 4139, July 6, 2021.

2.  B.-O. Guan*, L. Jin, J. Ma, Y. Z. Liang, and X. Bai, “Flexible Fiber-Laser Ultrasound Sensor for Multiscale Photoacoustic Imaging,” Opto-Electronic Advances, Vol. 4, No.8, Article #: 200081August 25, 2021. (Invited Paper)

3.  B.-O. Guan*, and Y. Y. Huang, “Interface Sensitized Optical Microfiber Biosensors,” IEEE/OSA Journal of Lightwave Technology, Vol. 37, No.11, pp. 2616-2622, June 1, 2019. (Invited Paper)

4. B.-O. Guan*, L. Jin, L. H. Cheng, and Y. Liang, “Acoustic and Ultrasonic Detection with Radio-Frequency Encoded Fiber Laser Sensors,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 2, Article #: 5601712, March/April 2017. (Invited Paper)

5. B.-O. Guan*, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” IEEE/OSA Journal of Lightwave Technology, Vol. 30, No. 8, pp. 1097-1112, Apr. 15, 2012. (Invited Paper)

6.  B.-O. Guan*, Y. Ran, F.-R. Feng, and L. Jin, “Formation and Applications of the Secondary Fiber Bragg Grating,”Sensors, Vol. 17, No. 2, 398; doi:10.3390/s17020398, Feb 18, 2017. (Invited Paper)

7.  B.-O. Guan*, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Optical Fiber Technology, Vol. 19, No. 6, pp. 793-801, Dec 2013. (Invited Paper)

8.   P. Chen, Y. Y. Huang*, Y. Bo, H. Liang, A. Xiao, and B.-O. Guan*, “3D nanointerface enhanced optical microfiber for real-time detection and sizing of single nanoparticles,” Chemical Engineering Journal, Vol. 407, Article 127143, Sept. 29, 2020. (IF: 10.65)

9.     J. Ma, Y. He, X. Bai, L.-P. Sun, K. Chen, K. Oh, and B.-O. Guan*, “Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging,” Photonics Research, Vol. 8, No. 10, pp. 1558-1565, Oct. 1, 2020. (IF: 6.09)

10.  Y. Y. Huang, P. W. Chen, A. X. Xiao, S. K. Zeng, and B.-O. Guan*, “Nucleic acid hybridization on a plasmonic nanointerface of optical microfiber enables ultrahigh-sensitive detection and potential photothermal therapy,”Biosensors and Bioelectronics, Vol. 156, Article 112147, May 15, 2020. (IF: 10.25)

11.  H. T. Li, Y. Y. Huang*, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B.-O. Guan*, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Science Advances, Vol. 5, eaax4659, Dec 20, 2019. (IF: 13.11)

12.  L-P Sun, Y Huang, T Huang, Z Yuan, W Lin, Z Sun, M. Yang, P. Xiao, J. Ma, W. Wang, Y. Zhang, Z. Liu, and B.-O. Guan*, “Optical Microfiber Reader for Enzyme-Linked Immunosorbent Assay,” Analytical chemistry, Vol. 91. No. 21, pp. 14141-14148, Nov. 5, 2019. (IF: 6.78)

13.  J. Ma, Y. Zhou, X. Bai, K. Chen, and B.-O. Guan*, “High-sensitivity and fast-response fiber-tip Fabry-Perot hydrogen sensor with suspended palladium-decorated grapheme,” Nanoscale, Vol. 11, No. 34. pp. 25821-15827, Sept. 14, 2019. (IF: 6.89)

14.  H. Li, Y. Y. Huang*, C. Chen, A. Xiao, G. Hou, Y. Huan, X. H. Feng, B.-O. Guan*, “Real-time cellular cytochrome C monitoring through an optical microfiber: Enabled by a silver-decorated grapheme nanointerface,” Advanced Science, Vol. 5, No. 8, Article 1701074, Aug 2018. (IF:15.84)

15.  Y. Y. Huang, M. Ding, T. Guo*, D. Hu, Y. Cao, L. Jin, and B.-O. Guan*, “A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO2nanospheres,” Nanoscale, Vol. 9, No. 39, pp. 14929-14936, Oct. 21, 2017. (IF: 6.89)

16.  Y. Y. Huang, T. Guo, Z. Tian, B. Yu, M. F. Ding, X. P. Li, B.-O. Guan*, “Non-Radiation Cellular Thermometry based on Interfacial Thermally Induced Phase Transformation in Polymer Coating of Optical Microfiber,”ACS Applied Materials & Interfaces, Vol. 9, No. 10, pp. 9024-9028, Mar. 15, 2017. (IF: 8.75)

17.  T. Guo, F. Liu, X. Liang, X. Qiu, Y. Y. Huang, C. Xie, P. Xu, W. Mao*, B.-O. Guan*, and Jacques Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,”Biosensors and Bioelectronics, Vol. 78, pp.221-228, Apr. 15, 2016. (IF: 10.25)

18.  D. Sun, T. Guo, Y. Ran, Y. Y. Huang, and B.-O. Guan*, “In-situ DNA hybridization detection with a reflective microfiber grating biosensor,” Biosensors and Bioelectronics, Vol. 61, pp. 541-546, 2014. (IF: 10.25)

19.  T. Guo, F. Liu, Y. Liu, N.-K. Chen, B.-O. Guan*, and J. Albert*, “In-situ detection of density alteration in non-physiological cells with polarimetric tilted ber grating sensors,” Biosensors and Bioelectronics, Vol. 55, pp. 452-458, May 15, 2014. (IF: 10.25)

20.  Y. Z. Tan, L.-P. Sun, L. Jin, J. Li, B.-O. Guan*, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Optics Express, Vol. 21, No.1, pp. 154-164, Jan 14, 2013.

21.  L.-P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, B.-O. Guan*, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Optics Express, Vol. 20, No. 9, 10.1364/OE.20.010180, Apr 23, 2012.

22.  Y. Ran, L. Jin, Y. N. Tan, L-P. Sun, J. Li, B.-O. Guan*, “High-Efficiency Ultraviolet Inscription of Bragg Gratings in Microfibers,” IEEE Photonics Journal, Vol. 4, No. 1, pp. 181-186, Feb 2012.

23.  J. Li, L-P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, B.-O. Guan*, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Optics Letters, Vol. 36, No. 18, pp. 3593-3595, Sept 15, 2011.

24.  B.-O. Guan*, Y. N. Tan, H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Optics Express, Vol. 17, No. 22, pp. 19544-19550, Oct 26, 2009.

25. Y. Zhang, B.-O. Guan*, H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Optics Express, Vol. 17, No. 12, pp. 10050-10055, Jun 8, 2009.

26.  B.-O. Guan*, H. Y. Tam, S. T. Lau, and HLW Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photonics Technology Letters, Vol. 17, No.1, pp. 169-171, Jan 2005.

27.  B.-O. Guan*, H. Y. Tam, and S. Y. Liu, “Temperature-independent fiber Bragg grating tilt sensor,” IEEE Photonics Technology Letters, Vol. 16, No.1, pp. 224-226, Jan 2004.

28.  B.-O. Guan, H. Y. Tam*, X. M. Tao, X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photonics Technology Letters, Vol. 12, No.6, pp. 675-677, Jun 2000.